

OSI data link layer

OSI data link layer

OSI model layer 2 TCP/IP model part of Network Access layer

Application		HTTP, FTP,		
Presentation	stream	etc	Application	
Session				
Transport	Segment	TCP, UDP	Transport	
Network	Packet	IP	Internet	
Data link	Frame	Ethernet,		
Physical	Bits	WAN technologies	Network Access	

Data link layer topics

Data Link layer protocols
Preparing data for transmission
Media access control methods
Logical network topologies
Encapsulating packets into frames
Layer 2 frame structure and header and trailer fields

Functions of data link layer

Encapsulates packets by adding a frame header and trailer including appropriate addressing.
 Controls access to the transmission medium.

Hops

There may be a different layer 2 protocol in use on each hop of a journey.

 Different media, different types of link, different bandwidths, LAN/WAN affect the choice of protocol.
 Different protocols have different frames.

The router removes the old frame and adds a new header and trailer for the next hop.

Institute of Electrical and Electronics Engineers I EEE 802.2 Logical link control ♦ IEEE 802.3 Ethernet IEEE 802.5 Token ring ♦ IEEE 802.11 Wi-fi **International Telecommunication Union** (ITU) Various WAN standards: HDLC, ISDN, Frame relay 24-Feb-14 Jaringan Komputer_D3 TT

Point to point link

Only two devices on the network
 Full duplex: both can send at the same time, no problem with media access

Half duplex: data can only travel one way at a time so one device can send at a time. Simple media access control.

Shared medium

Physical bus

Star with hub

 Needs media access control.
 If there is no control there will be many collisions and the frames will be destroyed.

Controlled media access

 Predictable, deterministic.
 Each device is given a time when it may send, and it most not send at any other time.

- High overhead.
- No collisions.

 Token passing – each host in turn gets the token and is allowed to send.
 E.g. token ring, FDDI

Contention based media access

- Non-deterministic, first come first served.
- Each device "listens" and sends when the medium seems to be clear.
- Low overhead.
- Collisions occur.
- Need a way of re-sending lost frames.
- Becomes inefficient on large networks.
- E.g. traditional Ethernet.

Z

Variation on contention based Traditional Ethernet uses CSMA/CD (collision detection): collisions are allowed and detected, frames sent again. Wi-fi uses CSMA/CA (collision) avoidance): when the medium is clear, host sends signal to say it is about to use the medium. It then sends.

Different environments

Fragile environment e.g. satellite link

- frames are likely to be lost need large overhead of control mechanisms to make sure data arrives.
- Protected environment e.g. modern LAN – frames not often lost – do not need such elaborate control mechanisms
 Therefore need different layer 2 protocols

Addressing needs

Point to point link – only one possible destination. Minimal addressing.

Multi-access network – need full addressing system.

Therefore need different layer 2 protocols.

Layer 2 frame format

All protocols have the same general form but there are variations.

PPP frame

Point to point links. Minimal addressing. Control mechanisms.

Ethernet frame

Multi-access links. Full addressing. No control field. <u>Same for all Ethernet</u>

types/bandwidths.

Preamble	Destination	Source	Туре	Data	Frame Check Sequence
8 bytes	6 bytes	6 bytes	2 bytes	46 - 1500 bytes	4 bytes
Timing and start	Addre 48 bits each	sses	Layer 3 protocol	Packet	Check and stop
24-Feb-14		Jari	ngan Komputer_	_D3 TT	17

ᅙ 802.11 Wi-Fi

LAN wireless protocol Fragile environment – lots of interference, risk of lost frames contention. Every transmission needs to be acknowledged. No acknowledgement – re-send frame. Lots of control mechanisms in frame.

End to end

PC sends packet to server

- Packet header has PC IP address and source and server IP address as destination.
- Frame header has PC MAC address as source and router MAC address as destination.

Hubs and switches link hosts

